Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Fish Biol Fish ; : 1-26, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37360577

RESUMO

Remaining resilient under disruption, while also being sustainable, is essential for continued and equitable seafood supply in a changing world. However, despite the wide application of resilience thinking to sustainability research and the multiple dimensions of social-ecological sustainability, it can be difficult to ascertain how to make a supply chain both resilient and sustainable. In this review, we draw upon the socio-ecological resilience and sustainability literature to identify links and highlight concepts for managing and monitoring adaptive and equitable seafood supply chains. We then review documented responses of seafood supply networks to disruption and detail a case study to describe the attributes of a resilient seafood supply system. Finally, we outline the implications of these responses for social (including wellbeing and equity), economic and environmental sustainability. Disruptions to supply chains were categorised based on their frequency of occurrence (episodic, chronic, cumulative) and underlying themes were derived from supply chain responses for each type of disruption. We found that seafood supply chains were resilient when they were diverse (in either products, markets, consumers or processing), connected, supported by governments at all scales, and where supply chain actors were able to learn and collaborate through trust-based relationships. With planning, infrastructure and systematic mapping, these attributes also can help to build socio-ecological sustainability and move towards more adaptive and equitable seafood supply.

2.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34566277

RESUMO

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

3.
Sustain Sci ; 16(2): 677-690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425035

RESUMO

Nutrient runoff from catchments that drain into the Great Barrier Reef (GBR) is a significant source of stress for this World Heritage Area. An alliance of collaborative on-ground water quality monitoring (Project 25) and technologically driven digital application development (Digiscape GBR) projects were formulated to provide data that highlighted the contribution of a network of Australian sugar cane farmers, amongst other sources, to nutrient runoff. This environmental data and subsequent information were extended to the farming community through scientist-led feedback sessions and the development of specialised digital technology (1622™WQ) that help build an understanding of the nutrient movements, in this case nitrogen, such that farmers might think about and eventually act to alter their fertilizer application practices. This paper reflects on a socio-environmental sustainability challenge that emerged during this case study, by utilising the nascent concept of digi-grasping. We highlight the importance of the entire agricultural knowledge and advice network being part of an innovation journey to increase the utility of digital agricultural technologies developed to increase overall sustainability. We develop the digi-MAST analytical framework, which explores modes of being and doing in the digital world, ranging from 'the everyday mystery of the digital world (M)', through digital 'awareness (A)', digitally 'sparked' being/s (S), and finally the ability of individuals and/or groups to 'transform (T)' utilising digital technologies and human imaginations. Our digi-MAST framework allows us to compare agricultural actors, in this case, to understand present modes of digi-grasping to help determine the resources and actions likely to be required to achieve impact from the development of various forms of digital technological research outputs.

4.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190461, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33131446

RESUMO

Climate change, overfishing, marine pollution and other anthropogenic drivers threaten our global oceans. More effective efforts are urgently required to improve the capacity of marine conservation action worldwide, as highlighted by the United Nations Decade of Ocean Science for Sustainable Development 2021-2030. Marine citizen science presents a promising avenue to enhance engagement in marine conservation around the globe. Building on an expanding field of citizen science research and practice, we present a global overview of the current extent and potential of marine citizen science and its contribution to marine conservation. Employing an online global survey, we explore the geographical distribution, type and format of 74 marine citizen science projects. By assessing how the projects adhere to the Ten Principles of Citizen Science (as defined by the European Citizen Science Association), we investigate project development, identify challenges and outline future opportunities to contribute to marine science and conservation. Synthesizing the survey results and drawing on evidence from case studies of diverse projects, we assess whether and how citizen science can lead to new scientific knowledge and enhanced environmental stewardship. Overall, we explore how marine citizen science can inform current understanding of marine biodiversity and support the development and implementation of marine conservation initiatives worldwide. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Assuntos
Biodiversidade , Ciência do Cidadão/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , Pesqueiros , Oceanos e Mares , Monitoramento Ambiental
5.
Sci Total Environ ; 704: 135345, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31831252

RESUMO

Intensification of the dairy industry globally, combined with a changing climate, has placed increased pressure on natural capital assets (and the flow of ecosystem services) on farms. Agroforestry is widely promoted as an intervention to address these issues. While some benefits of integrating trees on farms, such as carbon sequestration and biodiversity, are reasonably well known, less is known about other potential benefits, such as on-farm production. Understanding and quantifying these benefits would inform farm planning and decision-making. We used a systematic review approach to analyse the evidence base for biophysical ecosystem services from woody systems (including shelterbelts, riparian plantings, plantations, pasture trees, silvopasture and remnant native vegetation) provided to grazed dairy enterprises. We identified 83 publications containing 123 records that fit our review criteria of reporting on biophysical ecosystem services from woody systems on dairy farms relative to a grazed pasture comparison. For each relationship between a woody system and ecosystem service, we assessed the level of support, strength and predominant direction of evidence, and summarised the causal relationships (woody system ≫ mechanism ≫ outcome). Shelterbelts and riparian plantings were the most commonly reported woody systems. Linkages between woody systems and ecosystem services were largely positive, with the types of services provided and their importance differing among systems. Mean evaluation scores for the strength of the evidence were moderate to strong. However, the number of records for each relationship was often low. Consequently, only eight of the 30 causal pathways identified had high confidence; a further 14 had medium confidence indicating that these have good potential to deliver benefits but warrant further work. Although the evidence here was largely qualitative, our results provide strong support for the internal benefits that natural capital assets, such as on-farm woody systems, can provide to the productivity and resilience of grazed dairy enterprises.


Assuntos
Indústria de Laticínios/métodos , Árvores , Biodiversidade , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Fazendas
6.
Glob Chang Biol ; 24(2): 580-596, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28833818

RESUMO

With the human population expected to near 10 billion by 2050, and diets shifting towards greater per-capita consumption of animal protein, meeting future food demands will place ever-growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross-sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade-offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land-sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter-productive trade-offs resulting from land-sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross-sector interactions could transmit change across ecosystem and governance boundaries into the future.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Abastecimento de Alimentos , Animais , Mudança Climática , Conservação dos Recursos Naturais/tendências , Pesqueiros , Peixes , Humanos , Gado
7.
PLoS One ; 9(3): e91833, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24633147

RESUMO

A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.


Assuntos
Abastecimento de Alimentos , Modelos Teóricos , Alimentos Marinhos/provisão & distribuição , Algoritmos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...